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In the theory of chemical isomerism, considerable attention has been paid in the past
to the enumeration of all isomers (of a chosen type) of all molecules with a particular
molecular formula of interest, having an appropriate number of atoms of some special
interest (e.g., carbon atoms). Some corresponding methods and results are here developed
for enumerating ensembles or mixtures of molecules. The main emphasis is on asymptotic
enumeration results.

1. Introduction

An important aspect of the theory of chemical isomerism (cf. Rouvray [8] – espe-
cially section 9, and Slanina [9] – especially sections 5.3.6 and 5.6), going back more
than a century, has been the development of methods for enumerating the isomers
(of varying kinds) of molecules having molecular formulae of some particular signif-
icance, e.g., the formulae CnH2n+2 for normal, unbranched hydrocarbons (alkanes,
paraffins). Standard texts (e.g., Slanina [9, chapter 5] and Trinajstić [10, chapter 11])
often emphasize the rapid growth with n of the number of constitutional (structural) or
stereo isomers of molecules with such formulae as CnH2n+2, etc. This phenomenon
for various important types of molecules led to interest in both the algebraic and the
asymptotic behaviour of the number of isomers of molecules with a particular type of
molecular formula involving increasing numbers n of carbon atoms.

Major contributions towards answering questions of the preceding type were
published by G. Pólya in 1937, in a famous Acta Mathematica (Sweden) paper which
was reprinted in translation [7] in 1987, together with an up-dating commentary by
R.C. Read. For example, let ρn denote the total number of constitutional (structural)
isomers of alkane molecules (paraffins) of type CnH2n+2, and let Rn denote the total
number of constitutional isomers of alkanol (alcohol) molecules of type CnH2n+1OH.
Pólya [7] established that

ρn ∼ C1q
n
1 n
−5/2, Rn ∼ C2q

n
1 n
−3/2 as n→∞,

 J.C. Baltzer AG, Science Publishers
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where C1, C2, q1 are explicitly defined positive constants, with q1 = 2.85. . . , and
An ∼ Bn as n → ∞ means that limn→∞An/Bn = 1. He also gave various similar
types of asymptotic formulae as n → ∞ for corresponding isomer counting numbers
of certain other types of molecules with n carbon atoms.

If one takes a general viewpoint of theoretical constitutional or stereo chemistry,
as propounded, e.g., by Dugundji and Ugi [1], Dugundji et al. [2], or Ugi et al. [11],
the above remarkable conclusions of Pólya suggest some natural further asymptotic
isomer enumeration problems as follows, whose solutions require additional techniques
to those of Pólya [7]:

Consider an ensemble of molecules EM(A) as in Dugundji and Ugi [1], or Dug-
undji et al. [2], where A is some set of atoms. (By this is meant any compound
or collection of chemical species which can be formed from A using each atom in
A exactly once; here the word “ensemble” is not used in a thermodynamic or sta-
tistical mechanics sense. The set of all the EM(A) is called the family of isomeric
ensembles of molecules of A in [1,2], and denoted by FIEM(A).) Next, suppose that
Γ is a set of molecular formulae of interest, e.g., the formulae CnH2n+2 for alkanes
(n = 1, 2, 3, . . .). Instead of concentrating only on ensembles EM(A) and FIEM(A) as
defined in [1,2], we shall drop the condition that all atoms in A appear exactly once in
each ensemble EM(A), and consider instead the family FIEMΓ(A) of all isomeric en-
sembles whose molecules have molecular formulae lying in Γ, and their atoms all lie in
A but may be repeated. One might perhaps call any isomeric ensemble E in FIEMΓ(A)
a Γ-mixture. For example, if Γ is the set of formulae CnH2n+2 (n = 1, 2, 3, . . .), one
might call E a mixed alkane (alkane-mixture), or a mixed paraffin (paraffin-mixture).

Now suppose that Γ consists of various formulae which all involve one or more
atoms of a certain single type of interest, e.g., carbon atoms. In the earlier Pólya-type
theory one investigates the number σ∗n(γ) of all isomers of molecules having some
single formula γ in Γ (where γ involves n atoms of the special kind selected). However,
it would also seem natural to consider the extension of isomerism to ensembles of
molecules as in [1,2], and to then seek information about the number σn(Γ) of all
isomeric ensembles in FIEMΓ(A), i.e., not necessarily only single molecules, which
involve exactly n of the special atoms in total. For example, it would be natural to
investigate the total number σn of mixed alkanes (mixed paraffins) containing exactly
n carbon atoms, counting over all their molecules in total.

Main aim: The main aim of the present article is to asymptotically answer some of
the above-proposed enumeration problems about general chemical mixtures, for a few
selected, well known sets Γ of important molecular formulae in organic chemistry. The
later formulation of an appropriate mathematical context, and the indication of certain
general methods, for deriving such answers may possibly, however, be as worthy of
attention as the individual results to be listed explicitly.

Notes: Throughout the general discussion the term isomer is assumed to be taken
in some fixed sense, such as either constitutional (structural), or stereo, or other type
of interest. It is important to note that while they are theoretically feasible, for steric



J. Knopfmacher / Asymptotic isomer enumeration in chemistry 63

reasons, many of the mathematically allowed isomers would not actually be chemically
viable in a laboratory sense.1

I am grateful to an anonymous reader for some valuable comments about a first
draft of this paper, and also to Prof. J.C.A. Boeyens for helpful discussion of those
comments.

2. Individual enumeration results

Consider the following particular sets of molecular formulae:

(i) Γ1 = {CnH2n+2: n = 1, 2, 3, . . .}, for alkanes,

(ii) Γ2 = {CnH2n+1X: n = 1, 2, 3, . . .}, for 1-fold substituted alkanes (e.g., alkanols
if X = OH),

(iii) Γ3 = {C6+nH6+2n: n = 0, 1, 2, 3, . . .}, for alkyl substituted benzenes.

Along earlier lines, let σn(Γ) denote the number of constitutional (structural)
isomers of general Γ-mixtures containing n carbon atoms in total, and let Σn(Γ) denote
the corresponding number of stereoisomers, where Γ is any fixed set of molecular
formulae which all involve one or more carbon atoms. Also, let σ∗n = σ∗n(γ) and
Σ∗n = Σ∗n(γ) denote the corresponding numbers of isomers of molecules of type γ, for
a formula γ in Γ involving exactly n carbon atoms.

By using asymptotic results of Pólya [7] regarding certain specific enumeration
numbers σ∗n, Σ∗n as n→∞, and an independent mathematical theorem of Knopfmacher
and Knopfmacher [6], the following asymptotic enumeration results for corresponding
general Γ-mixtures with n carbon atoms in total will be derived in section 5 below.
In these results, the symbols Ki, qj denote certain particular positive constants, with
qj > 1 (i = 1, . . . , 5; j = 1, 2):

σn(Γ1)∼K1q
n
1 n
−5/2 as n→∞, (2.1)

σn(Γ2)∼K2q
n
1 n
−3/2 as n→∞, (2.2)

Σn(Γ1)∼K3q
n
2 n
−5/2 as n→∞, (2.3)

Σn(Γ2)∼K4q
n
2 n
−3/2 as n→∞, (2.4)

σn(Γ3)∼K5q
n
1 n
−3/2 as n→∞. (2.5)

3. A mathematical context for the results

In order to derive asymptotic enumeration estimates like those of (2.1)–(2.5)
above, we shall begin by fitting the general discussion of families FIEMΓ(A) of Γ-
mixtures within a convenient mathematical framework.
1 Cf., say, D.J. Klein and W.A. Seitz, in: Chemical Applications of Topology and Graph Theory, ed.

R.B. King (Elsevier, Amsterdam, 1983) pp. 430–445.
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Suppose as before that all formulae in Γ involve one or more atoms of a certain
single type of interest, to be called ∗-atoms for the sake of reference here (e.g., carbon
atoms). Suppose that Γ is the union of finite sets Γ(1), Γ(2), Γ(3), . . . , such that each
formula γ in Γ(n) involves n ∗-atoms, as well as other atoms perhaps. In all, let
A = A(Γ) denote the set of all types of atoms involved in one or more formulae of Γ.
(In practice, A would usually be a finite set of atoms which all occur in every formula
γ of Γ, but with possibly varying multiplicities as γ varies.)

Next, suppose that some type of isomerism has been fixed (e.g., constitutional, or
stereo, etc.) and extended to ensembles of molecules of the type under consideration.
For each formula γ in Γ, let P (γ) denote the set of all isomers of molecules with
molecular formula γ, and let PΓ =

⋃
γ∈Γ P (γ) denote the union of all these sets P (γ).

Then let G′Γ = FIEMΓ(A) denote the family of all isomeric ensembles of molecules
which have molecular formulae in Γ, where A = A(Γ) as above.

Isomerism is an equivalence relation between molecules, or ensembles of mole-
cules, and every such ensemble E can be regarded as an unordered “string” of distinct
molecules M1, . . . ,Mr (say), which may be written symbolically as

E = M1 + · · ·+Mr.

The corresponding isomer equivalence class E of E is similarly an unordered string
of the isomer equivalence classes M1, . . . ,Mr, and one may similarly write formally

E = M1 + · · ·+Mr.

In such a situation, some of the molecules Mi,Mj might perhaps be isomers, so that
M i = M j . If this possibility is taken into account, then eventually one obtains a
symbolic sum

E = k1M
′
1 + · · ·+ ksM

′
s,

in which the molecules M ′1, . . . ,M ′s are mutually non-isomeric, and kM denotes a
string of k copies of M if k = 1, 2, 3, . . . . This symbolic expression for E as a “sum”
is then unique apart from rearrangement of the terms kiM

′
i .

The above type of symbolic decomposition of the families E in G′Γ into symbolic
sums, suggests the following addition operation + on G′Γ, which corresponds natu-
rally to the idea of combining or mixing separate Γ-mixtures. Any ensembles E1,E2

can, with convenient choice of notation, be written as strings of distinct molecules
{M1, . . . ,Mt}, {Mt+1,Mt+2, . . . ,Mr} with

E1 = M1 + · · ·+Mt, E2 = Mt+1 + · · · +Mr.

The combined or mixed ensemble defined by joining these ensembles may then be
written symbolically as

E1 +E2 = M1 + · · ·+Mt +Mt+1 + · · ·+Mr ,
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and one may similarly define

E1 +E2 = M1 + · · ·+M t +M t+1 + · · ·+Mr.

(It is, of course, assumed that Γ is such that such combinations or mixtures are stable,
and do not give rise to totally new molecules or strings of molecules.)

In terms of standard algebraic concepts, the above remarks show that under
the indicated operation of addition GΓ forms a commutative semigroup with unique
additive decomposition into the “basis” set PΓ of all isomers of actual molecules with
molecular formulae in Γ. PΓ is then unlike an ordinary basis of linear algebra, in that
only linear combinations with positive integer coefficients occur relative to PΓ in G′Γ.
It would sometimes be algebraically convenient to allow general non-negative integer
coefficients by enlarging G′Γ to GΓ = G′Γ ∪ {θ}, where θ denotes a single new and
purely formal isomeric “ensemble” involving no molecules.

Since all ensembles of molecules with formulae in Γ contain one or more ∗-atoms
by hypothesis, the total number ∂(E) or ∂(E) of ∗-atoms involved in an ensemble E
provides a natural “size” or degree function ∂ on GΓ such that

(i) ∂(x) = 0 if and only if x = θ in GΓ,

(ii) ∂(x+ y) = ∂(x) + ∂(y),

(iii) the total number G#
Γ(n) of elements of degree n in GΓ is finite for each n =

0, 1, 2, . . . .

The present importance of the above mathematical considerations lies mainly in
the fact that (for varying sets Γ = Γ1, Γ2, Γ3, and varying types of isomerism) the
above-stated enumeration formulae (2.1)–(2.5) are asymptotic statements as n → ∞
about the number G#

Γ(n) of isomeric ensembles (Γ-mixtures) in GΓ with exactly n
∗-atoms in total, i.e., the number of elements of degree n in the semigroup GΓ. The
main reason for introducing the formal addition operation + on GΓ is that it allows
the problem of proving (2.1)–(2.5) to be reduced as below to questions about certain
types of mathematical objects which have been studied elsewhere for quite different
reasons. Mathematical theorems about such objects can be applied to chemical settings
of the above kind whenever suitable results of the types of Pólya [7] for certain kinds
of isomers of molecules have already been derived separately.

4. Applications of abstract number theory

The chemical semigroups GΓ, for varying sets Γ of molecular formulae, and
varying types of isomerism, provide some natural scientific models of mathematical
objects which have been investigated for various different reasons as differing kinds of
abstractions of the number theory of positive integers and their prime decompositions
(cf. Knopfmacher [4,5], say). In order to see how the chemical enumeration problems
may be subsumed under the appropriate mathematical theory, we therefore recall the
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relevant abstract number-theoretical concepts [4,5]; we confine attention to integer-
valued “size” functions, since these are sufficient for present applications:

By definition, an arithmetical semigroup (a.s.) is a commutative semigroup G
with an identity element 1 (relative to a multiplication operation · ), which contains
a subset P such that every element a 6= 1 admits unique factorization into a finite
product of powers of elements of P , and which admits a positive integer-valued “norm”
function | | on G such that

(i) |a| = 1 if and only if a = 1 in G,

(ii) |a · b| = |a| · |b|, and

(iii) the total number G(n) of elements a in G with |a| = n is finite for each n =
1, 2, 3, . . . .

The elements p of P are called the (abstract) primes of G. If, instead of a norm
function | |, there exists a non-negative integer-valued degree function ∂ on G with
the following properties (i′)–(iii′), then G is called an additive a.s.:

(i′) ∂(a) = 0 if and only if a = 1 in G,

(ii′) ∂(a · b) = ∂(a) + ∂(b),

(iii′) the total number G#(n) of elements a in G with ∂(a) = n is finite for each
n = 0, 1, 2, . . . .

Note that, if G is any additive a.s., then G automatically becomes an a.s. in
the first sense if one chooses any fixed integer k > 1 and then defines | | = | |k
by |a| = k∂(a). However, the converse statement may not be true: e.g., consider the
proto-type N of all arithmetical semigroups, for which N = {1, 2, 3, . . .} and |n| = n.

Obviously, if G is any a.s., then the total number P (n) of prime elements p in
P with |p| = n is finite for each n = 2, 3, 4, . . . . Similarly, if G is any additive a.s.,
then the total number P #(n) of prime elements p in P with ∂(p) = n is finite for each
n = 1, 2, 3, . . . .

Theorems which establish information about the numbers P (n), or P #(n), on
the basis of hypotheses about the numbers G(n), or G#(n), are called abstract prime
number theorems, while theorems which lead in the converse direction may be called
inverse abstract prime number theorems. For example, the famous classical prime
number theorem for N above asserts that

π(x) ∼ x

log x
as x→∞,

where π(x) is the number of ordinary primes p in N with p 6 x; here N(n) = 1 for
n = 1, 2, 3, . . . is so trivial a function that its use is only implicit.

A variety of further theorems of these kinds have been established in different
contexts. Some examples of such theorems are discussed, e.g., in [4,5], but a different
one of Knopfmacher and Knopfmacher [6] will be quoted and used later in order to
derive the stated results (2.1)–(2.5) above. However, before doing this, we return to the
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relevance of these abstract number-theoretical questions to the chemical semigroups GΓ
of Γ-mixtures:

Firstly, although the natural addition operation + on GΓ has useful properties as
outlined earlier, it is more convenient to the derivation of (2.1)–(2.5) to now formally
re-designate addition as “multiplication”. Thus for elements x, y of GΓ, we formally
re-write x + y as x · y. Then kx, for x in G and k = 1, 2, 3, . . . , now becomes xk,
and we shall re-denote θ by the symbol 1. After doing this, we may then note that
the discussion of GΓ in section 3 implicitly shows that GΓ is an additive a.s. Further,
the earlier set PΓ may now be regarded as the set of all abstract primes of GΓ. In
addition, the above-stated formulae (2.1)–(2.5) may be interpreted as assertions about
certain particular counting numbers G#

Γ(n) as n → ∞. (Note: Since the difference
between + and · on GΓ is only formal, we could have avoided + altogether. However,
the initial use of + might perhaps seem more intuitive.)

At this stage, we shall quote some asymptotic isomer enumeration results of
Pólya [7] and re-interpret them as assertions about particular counting numbers P #

Γ (n)
as n→∞. It is convenient to do this in the form of a table, on the basis of conclusions
listed in the introduction of Pólya [7], and the commentary by Read in [7]. (The survey
by Harary et al. [3] may also be consulted, but uses slightly different notation.) The
type of isomerism involved for the particular semigroup GΓ under consideration, will
be clear from the discussion in section 2 above; when stereoisomers are involved the
subscript s will here be added to P #

Γ (n). In the stated results, the symbols Ci, qj
denote certain particular positive constants (i = 1, . . . , 5; j = 1, 2), with q1 = 2.85. . . ,
q2 = 3.33. . . .

5. An abstract prime number theorem

It is easy to see from table 1 that all the individual chemical semigroups GΓ cho-
sen for scrutiny in section 4 have the property hypothesised in the following “axiom”,
which may or may not be valid for general additive arithmetical semigroups:

Axiom Φ. G is an additive a.s. with the property that there exist positive constants
C, q, α depending on G, with q > 1 and α > 1, such that

P #(n) ∼ Cqnn−α as n→∞.

Table 1

Section 2 Pólya’s Arith. semigroup Asymptotic behaviour
notation notation notation as n→∞

(4.1) σ∗n(Γ1) ρn P #
Γ1

(n) C1q
n
1 n
−5/2

(4.2) σ∗n(Γ2) Rn P #
Γ2

(n) C2q
n
1 n
−3/2

(4.3) Σ∗n(Γ1) σn P #
Γ1,s

(n) C3q
n
2 n
−5/2

(4.4) Σ∗n(Γ2) Sn P #
Γ2,s

(n) C4q
n
2 n
−3/2

(4.5) σ∗n(Γ3) – P #
Γ3

(n) C5q
n
1 n
−3/2
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A simple way to see that axiom Φ is not necessarily always valid, is to consider
any fixed prime element p0 in any additive a.s. G and let G0 = {1, p0, p2

0, p3
0, . . .}.

Then G0 is also an additive a.s., but has only one prime element p0. On the other
hand, it can be shown that axiom Φ is also valid for various concrete mathematical ex-
amples of arithmetical semigroups, which are suggested by geometry and graph theory
and have no obvious connections with chemistry. Such semigroups are investigated
by Knopfmacher and Knopfmacher [6], where the following (inverse) abstract prime
number theorem is proved:

Theorem 5.1. Suppose that G is any additive a.s. satisfying axiom Φ above. Then

G#(n) ∼ Kqnn−α as n→∞,

where

K = CZG
(
q−1) and ZG(y) =

∞∑
r=0

G#(r)yr.

This is not the place to consider the mathematical proof of theorem 5.1. How-
ever, it should now be clear that the earlier-stated general isomer enumeration results
(2.1)–(2.5) for mixtures are all corollaries of theorem 5.1, after applications have been
made of Pólya’s classical molecular isomer enumeration results, as listed in (4.1)–(4.5)
of table 1.

6. Final remarks

Different mathematical settings (cf. [4,5], say), as well as some different chem-
ical enumeration results of Pólya [7] show that axiom Φ above does not embrace all
possible important types of asymptotic behaviour which naturally occurring arithmeti-
cal semigroups can satisfy. In particular, some of Pólya’s other chemical enumeration
results suggest the consideration of one or more further “axioms” in place of axiom Φ.
The mathematical treatment of such other cases, which involve different asymptotic
formulae, requires different techniques from those used to prove theorem 5.1. It is
hoped to pursue such investigations and applications in some subsequent papers.
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